An Astrolabe by Muhammad Muqīm of Lahore Dated 1047 AH (1637-38 CE)*

MUBASHIR UL-HAQ ABBASI
SREERAMULA RAJESWARA SARMA

Abstract

Astrolabe was the most important astronomical instrument in the medieval period. It became popular in the Indian subcontinent after the eleventh century. The production of astrolabes and celestial globes in the Indian subcontinent was dominated by Ustäd Allāh Dād and his descendants in the second half of the sixteenth century and in the seventeenth century. Their astrolabes display a fine combination of geometrical precision, high level of metal craft and aesthetic beauty. Allāh Dād's descendants revolutionised the production of the celestial globes by casting them as single hollow spheres by the lost-wax process. About a bundred and twenty astrolabes and twentyfive globes made by this family are extant today in museums and private collections in India, Middle East, Europe and USA. In Pakistan, however, there are just two astrolabes made by Allāh Dād's grandson Mubammad Muqīm are available. One is housed in the Labore Museum and the other is kept in the Islamabad Museum. Nevertheless, these two astrolabes constitute an important national heritage and deserve to be studied in detail. The present paper offers a full technical study of an elegant astrolabe made by Muhammad Muqim in 1637, which is now preserved in the Islamabad Museum.

$$
\text { ı } \% \pi
$$

Introduction

The astrolabe or more accurately the planispheric astrolabe is a two-

[^0]dimensional representation of the celestial sphere. It was the most important astronomical instrument in the mediaeval period. The altitude of the sun can be measured with it in the daytime and the altitudes of several bright stars at night. With these values, time can be determined both during the day and at night. It can be used to solve a number of trigonometric problems. ${ }^{1}$

The principal components of the astrolabe are the main body, called mater, a perforated plate called rete on which the positions of several bright stars are marked and a set of plates prepared for different terrestrial latitudes so that travellers can use the astrolabe wherever they go. So a caravan from Xi'an (China) could travel to Samarqand, Iṣfahān, and up to Cairo or Makkah using the same astrolabe as a navigation device. When the rete is correctly placed upon the plate for the observer's latitude, its rotation around the centre simulates the movement of the stars around the pole.

In the rete, the points indicating the star positions are joined to the main frame by artistic traceries. There are also "blank pointers" which do not depict a star but which are necessary to give mechanical stability and a symmetrical look to the rete. The artistic ambience of an astrolabe, its light weight and a manageable size made it not only an item worthy of kings but also a handy instrument for the travellers. The position of the celestial objects could either be measured for that instant or calculated for any time of the year. This facilitated the mu'adbdbin and the muwaqqit in the mosque to call for the prayers. It equally suited a Jyotishi interested in muburat (auspicious time for an event) or an astrologer nujūmī casting the horoscope. The accuracy of the readings was adequate for a mathematician to solve problems of spherical trigonometry and a surveyor to calculate the height of a hill or a distant tower of the fort. A ready reckoner for a geographer and a measuring device for an astronomer, the astrolabe showed a variety of facets to its divergent users. It is a fine combination of arithmetic and geometrical models. The tables, graphical lines, and nomograms represent the arithmetic model and the heavenly motion using rete, plates and pin typify the geometrical model.

01. History of the Astrolabe

The astrolabe was invented in Greece but attained its fullest perfection in the Islamic world. It is not known precisely when it was invented and by whom? The construction of the astrolabe is based on stereographic projection, which

[^1]is said to have been invented by Hipparchus who lived in the second century BC. Along with the Greek sciences, the astrolabe was adopted by the Islamic world in the eighth century CE. ${ }^{2}$

The adoration for knowledge and religious requirements like the direction of qiblah, times of prayers and start of the month of fasting promoted astronomy in the Islamic world. The observational astronomy was a forte of Islamic sciences. The Muslim interest in Greek sciences introduced them to this special instrument called $\dot{\alpha} \sigma \tau \rho o \lambda \dot{\alpha} \beta o s$ in Greek, asṭurlāb or asturlāb in Arabic and Persian respectively and "astrolabe" in English. According to the famous historian Ishāq b. al-Nadīm [d. 995 CE], astrolabes were quite popular already before Abbasids but were extensively made in the reign of Ma'mūn al-Rashīd (r. 813-833 CE). ${ }^{3}$ Many renowned scholars like alKhawārizmī [780-850 CE], Māshä Allāh b. Atharı̄ [740-815 CE] and al-Bīrūnī [973-1048 CE] wrote valuable texts on the construction of the astrolabe and its use. The treatise of Naṣī̀ al-Dīn al-Ṭūsī (1201-1274 CE) on the astrolabe became quite popular in India. ${ }^{4}$ The science and art of astrolabe making became a widespread activity in the Muslim world. Important contributions were also made in Andalusia, such as the universal astrolabe designed by Abū Isḥāq Ibrāhīm b. Yaḥyā al-Zarqā1̄ (1029-1087 CE).

From Andalusia, the astrolabe spread to Europe where it was adopted with great enthusiasm and several books were written on it in Latin. More importantly, many of the names which are used for the fixed stars today are derived from the Arabic names engraved on the astrolabes. For example, ra's al-ghūl is known today as "Algol," al-dabarān as "Aldebaran," al-fard al-sbujā" as "Alphard" and so on. ${ }^{5}$ From the Islamic world, the science of the astrolabe spread westwards up to England and eastwards up to India.

In the Islamic world, in particular, the astrolabe enjoyed a great prestige. Its popularity spread outside the confines of observatories and was mentioned by poets as well. The famous poet Jalāl al-Dīn Rūmī (1207-1273 CE) has allegorically mentioned astrolabe as an instrument of measurement in his mathnavī. He says,

[^2]Pas tura 'aqlat cbū uṣturlāb būd Zān badān̄̄ qurb-i kbūrshīd-i wuujūd ${ }^{6}$
Hence you and your intellect are like the astrolabe: by this means you may know the nearness of the Sun of existence. ${ }^{7}$
At another place he writes,
'illat-i ‘áshiq zi'illathā judā ast ishq usturlāb-i asrār-i khudā ast ${ }^{8}$
The lover's ailment is separate from all other ailments: love is the astrolabe of the mysteries of God. ${ }^{9}$

The earliest extant astrolabes made in the Islamic world are from the tenth century. According to L. A. Mayer, there were more than one hundred and thirty astrolabe makers in the Islamic world (called asṭurlābī) who showed their passion for this instrument. ${ }^{10}$ Numerous variations and innovations were made in the thousand years of their glory. This led to many types of astrolabes, spherical, linear and planispheric etc. But the spherical and linear astrolabes are theoretical curiosities and have no practical relevance. The most practical and therefore most popular was the planispheric astrolabe, more correctly the "planispheric northern astrolabe" (shamā $\bar{\imath} \bar{\imath}$ saṭh̄̄ asṭurlāb).

Each culture area, where the astrolabe was cultivated, developed its own technical and aesthetic style, to discuss which is beyond the scope of this paper. However, three broad categories can be mentioned, viz., the European style, the style of the Western Islam (Maghrib) and that of Eastern Islam (Mashriq). ${ }^{11}$ A few differences may be mentioned here. The European astrolabes have a rotating arm in front of the astrolabe on top of the rete besides the alidade at the back. They do not have the cotangent scale at the back which is more relevant to Muslims for determination of prayer times. ${ }^{12}$ The astrolabes made in the Maghrib, the Mashriq and Europe differ in the style of throne (kursì); a simple, undecorated throne being more popular in the Maghrib and Europe whereas ostentation was preferred in the Mashriq. ${ }^{13}$ Within the Mashriq there are distinct differences in Persian and Indian astrolabes. The Persian astrolabes have solid thrones with surface decorations whereas those made in India have generally perforated thrones. In Indian

[^3]astrolabes, the rete contains more star pointers. The design of the back also differs in Persian and Indian astrolabes. In Persian Safavid astrolabes, the horizontal and vertical parallels in the upper left quadrant as also the arcs of the signs of the zodiac in the upper right quadrant are stereographically projected while in the Indian astrolabes these are equidistant. In Indian astrolabes, a graph of the meridian altitude of the sun is plotted upon the arcs of the zodiac signs, which is not the case in Persian astrolabes. Finally, in the Persian Safavid astrolabes, the entire surface is filled with fine ornamental engraving, the letters and numerals being engraved in high relief against a patterned background. In contrast, the engraving on the Indian astrolabes is plain and austere. ${ }^{14}$

02. The Astrolabe in India

Many types of instruments were used by astronomers in India prior to the arrival of Muslims. The classical Siddhāntas, Sanskrit texts on Indian astronomy dating back to fifth century CE, included methods of observations using instruments. ${ }^{15}$ Astrolabe was introduced probably by Abū 'l-Rayḥān Muḥammad b. Aḥmad al-Bīrūnī (973-1048 CE) in India in the early eleventh century. ${ }^{16}$ A famous poet Abū 'l-Hasan Yamīn al-Dīn Khusrau (1253-1325 CE), known as Amīr Khusrau, gives a brief account of astrolabe in his \bar{A} inab-i Sikandarī. He has mentioned rete and alidade and the latter use for sighting sun showing his knowledge and the popularity of this instrument in his times. ${ }^{17}$

From the small hole (in alidade) the sight becomes clear (and) the secret of the sun becomes obvious like the daylight.

Fīrūz Shāh Tughlaq (r. 1351-1388 CE) took a keen interest in astronomy and patronised the translation of Sanskrit texts into Persian and Arabic and Persian texts into Sanskrit. He promoted manufacturing of astrolabes starting

[^4]a new era in Indian astronomy. ${ }^{19}$ Indians termed the astrolabe as yantrarāja, "king of instruments" because of its versatility. Mughal emperors were immensely interested in science, art and culture. The fervent effort on instrument making seen during Mughal period lasted until the middle of nineteenth century. More than two hundred and sixty-five astrolabes were produced in India during the period between sixteenth and eighteenth centuries. Out of these, some ninety astrolabes have Sanskrit inscriptions showing the synthesis of scientific traditions. ${ }^{20}$

03. Astrolabe Makers of Lahore

During the Mughal period, Lahore became the major centre of instrument making, a tradition that was kept alive till the nineteenth century. A family of astrolabists, headed by Ustād Allāh Dād Asțurlābī Humāyūnī Lāhōrī (fl. ca. 1550) produced about 120 astrolabes. ${ }^{21}$ This specialised work started during the reign of Mughal Emperor Humāyūn (r. 1530-1540 and 1555-1556). Allāh Dād's son Mullā İsā and grandsons Muḥammad Muqīm and Qā’im Muhammad followed by three grand-grandsons carried this tradition till the end of the seventeenth century. It has been argued that "in the entire history of scientific instrumentation in the Middle Ages there has been no other family comparable to this one in terms of the long continuous family tradition, the immense quantum of work produced the artistic and technical excellence of production and or in the innovations in design." 22

Allāh Dād's grandson Muḥammad Muqīm was a very prolific astrolabe maker. The thirty-seven extant astrolabes made by him have dates between 1609 and $1659 .{ }^{23}$ A rough estimate may place his year of birth around 1590. His astrolabes are considered masterpieces of metal craft with beautiful and matching patterns on the kursī and on the rete; they are at the same time geometrically very precise. He made the world's smallest astrolabe with a diameter of 43 mm and also the most elaborate zoomorphic astrolabe with a diameter $352 \mathrm{~mm} .{ }^{24}$ In 1994, Saifur Rahman Dar, former director of the

[^5]Lahore Museum, did an important survey of the astrolabes preserved in the museums of Pakistan. ${ }^{25}$ According to him only two astrolabes of Muqim are in Pakistan. An undated astrolabe by Muqim is in the Lahore Museum (inventory number M-44-1) and a dated astrolabe was formerly in the National Museum of Pakistan, Karachi (inventory number N.M.1959-407). The dated astrolabe has now been transferred to the Islamabad Museum and is the subject of the present study. ${ }^{26}$

The Astrolabe made by Muḥammad Muqīm in 1047 AH

1.0. The Astrolabe in the Islamabad Museum

The brass astrolabe by Muhammad Muqim which is now preserved in the Islamabad Museum (inventory number ID 186) is one of the finest instruments, with all the components intact. The astrolabe is well preserved with negligible scratches and patina. All the components seem to have been made at the same time. According to the inscription engraved on the back, it was made in 1047 AH (1637-38 CE)

1.1 The Components of the Astrolabe

This astrolabe consists of the following components

- Mater (Latin = mother; Arabic, $u \mathrm{~mm}$) is 256 mm in diameter and 375 mm in height.
- Rete (Latin = net or mesh; Arabic shabakab; or 'ankabūt, "spider") is 240 mm in diameter.
- Five plates (ṣafẩ $\imath h$, plural of ṣafibah,), each with a diameter of 238 mm .
- Alidade (from the Arabic al- adēdab; Latin: radius) is 232 mm long and 20 mm wide with two holes (hole: thuqbah) each in the rectangular sighting plates.
- Ring (ḅalqah) attached to the throne (kursī) through a shackle ('urwab)
- A pin (qutb) passing through the hole in the astrolabe and secured by a small washer (fals) and horse-shaped wedge (faras) in the front.

[^6]

Fig. 1 The Astrolabe made by Muḥammad Muqīm, Islamabad Museum: The Front

Fig. 2 Astrolabe made by Muḥammad Muqīm: All Componenets

1.2 The Suspensory Apparatus

In Islamic astrolabes, it is usual to have a triangular, decorated piece of metal (throne) between the circular body of the astrolabe and the ring that is used for suspending it in a vertical position. The throne may either be pierced or a flat type with inscriptions on it. The cultural interaction between medieval Iran and India influenced some of the design features of Indian astrolabes. One of the usual distinct features was the pierced kursī (throne) in Persian astrolabes (e.g., an astrolabe made by Ḥāmid b. Maḥmūd al-Iṣfahānī in 1152 CE. ${ }^{27}$ In India, the astrolabes usually have pierced type throne, also called Indo-Persian style throne. The triangular throne of this astrolabe is 63 mm high with a base to height ratio of 2:1, giving it a balanced look. To the top of the kursī is attached a shackle through which passes a ring. The shackle and ring are so designed that the astrolabe can be suspended in a vertical place and turned all around. In the centre of the kurs $\bar{\imath}$ are inscribed the following words in Persian (Nastaliq script): "Zi Gbafūr maghfirat ummīd dāram." It can be translated as "I hope to be forgiven by the Forgiver."

1.3 The Front of the Astrolabe

The front (wajh) of this astrolabe has a circular raised outer rim (hajrah or tarwq) of 9 mm width. It is divided into angles marked clockwise from Zero to Three hundred and sixty degrees and every five degrees are marked in abjad notation. The interior of the mater houses a set of plates, with the rete on top. A notch in the plates fits into a small metallic protrusion (mumsikah) on the bajrab, thus preventing the plates from rotating freely. All the plates and rete have a hole at the centre through which passes the pin and it is secured in the front by a delicately designed horse-shaped wedge called faras.

1.4 The Rete

The rete of an astrolabe can be called the pièce de résistance and very aptly so in this particular astrolabe (Fig. 3). It displays the ecliptic ring and the positions of forty-six stars. A delicate floral design connects the star pointers (shaziyyab) to the main frame. The broad ring of the ecliptic is joined to the outer rim of the Tropic of Capricorn by the floral design and an east-west bar. A small metallic knob (mudir) is inserted into the rete for rotating the rete. The circle of the celestial equator is not represented as done in some astrolabes. The ecliptic ring has the names of the zodiac signs, starting from the vernal equinox, and inscribed anti-clockwise. Each sign is subdivided into degrees, and groups of five degrees are numbered as five, ten, fifteen, twenty,

[^7]twenty-five, and thirty in abjad notation. The names of zodiac signs are written as al-Hamal (Aries), al-Thawr (Taurus), al-Jawzä' (Gemini), al-Saratān (Cancer), al-Asad (Leo), al-Sunbulah (Virgo), al-Mīzān (Libra), al-'Aqrab (Scorpio), al-Qaws (Sagittarius), al-Jad̄̀ (Capricornus), al-Dalw (Aquarius), and al- $ب \bar{u} t$ (Pisces). The names of forty-six stars engraved on the rete, their identification, and the modern names are shown in Table 1 below. The stars are arranged according to their increasing longitude, starting from the vernal equinox. In the last column, the modern names marked with an asterisk are derived from Arabic.

Fig. 3 Rete of the Astrolabe Made by Muḥammad Muqīm

Table 1: Stars on the Rete of the Astrolabe

S. No.	Star Names	Transliteration	Identification	Modern Names	
1	، القّطس الجمّو	Dhanab al-Qaytus alJanūbū	β Ceti	Deneb Kaitos*	
2	بط بط الموت	Baṭ al-Hūut	β Andromedae	Mirach*	
3	لل لمساسل	Rijl al-Musalsilab	γ Andromedae	Almach*	
4	ط	Fam al-Qaytus	γ Ceti		
5	صدر لـ	Sadr al-Qaytus	π Ceti		
6	كا	Kaff al-Jadhmā	α Ceti	Menker*	
7	رأس النول	Ra's al-Ghūl	β Persei	Algol*	
8	الi	Thānı̄ Masāfat al-Nabr	θ Eridani	Achernar*	
9	\|	Dabarān	α Tauri	Aldebaran*	
10	العيوق	Al- 'Ayyūq	α Aurigae	Capella	
11	يد الجوزا السِرئ	Yad al-Jawzä' al-Yusrā	γ Orionis	Bellatrix	
12	\| رجل الجوز	البسرى	Rijl al-Jawzā'al-Yusrā	β Orionis	Rigel*
13	\| رج إلجوزا الهِن	Rijl al-Jawzā' al- Yumnā	k Orionis	Saiph*	
14	يد الجوز) اليهنى	Yad al-Jawzā’ al- Yumnā	α Orionis	Betelgeuse*	
15	شعرن باني.	Shi'rā Yamāniyyab	α Canis Majoris	Sirius	
16	شعرن شإيه	Shi'rā Shamāliyyab	α Canis Minoris	Procyon	
17	\% الشجاع	Minkhar al-Shujā ${ }^{\text {c }}$	σ Hydrae		
18	راس الأسد	Ra's al-Asad	ε Leonis		
19	قلب الأهد	Qalb al-Asad	α Leonis	Regulus	
20	ظهر الهب	Zahr al-Dubb al-Akbar	α Ursae Majoris	Dubhe*	
21	فرد الشّع	Fard al-Shujā ${ }^{\text {c }}$	α Hydrae	Alphard*	
22	b	Zabr al-Asad	δ Leonis	Zosma	
23	ثاءد3	Qā'idat al-Bāț̄yab	α Crateris	Alkes*	
24	صرن	Şarfab	β Leonis	Denebola*	
25	جناح الفرب	Janāh al Gburāb	γ Corvi	Gienah*	
26	dic	'Anāq	ξ Ursae Majoris	Mizar*	

27	ساك	Simāk al-'Azal	α Virginis	Spica	
28	س/ك الرلهح	Simāk al-Rāmib	α Bootis	Arcturus	
29	عق المية	'Unq al-Hayyah	α Serpentis	Unuk*	
30	كن شالى	Kiffah Shumalì	β Librae	Zubeneschamali*	
31	رأس الجاثّ	Ra's al-Jāthī	α Herculis	Rasalgethi*	
32	/ر الوف*	Nasr al-Wāqi ${ }^{\text {' }}$	α Lyrae	Vega*	
33	\|R		Rakba al-Hawwä al- Yusrā	ξ Ophiuchi	
34	رأس إ	Ra's al-Hawwa'	α Ophiuchi	Rasalhague*	
35		Yad al-Hawwä' al- Yumnā al-Muqaddam	δ Ophiuchi	Yad prior*	
36		Minqār al-Dajājab	β Cygni	Albireo	
37	,	Nasr al-Tā'ir	α Aquilae	Altair*	
38	نب اللهجاجة	Dhanab al-Dajajah	α Cygni	Deneb*	
39	نب الملكنين	Dhanab al-Dulf in	ε Delphini		
40	\%	Fam al-Faras	ε Pegasi	Enif*	
41	نب	Dhanab al-Jadī	δ Capricorni	Deneb Algedi*	
42	سلف هاكب الجنو	Sāq Sākib al-Janūb̄̄	δ Aquarii	Skat*	
43	فنب التُّط شالي	Dhanab al-Qaytus Shumātī	${ }^{1}$ Ceti		
44	كا	Mankib al-Faras	β Pegasi	Scheat*	
45	سرة الd	Sirrat al-Faras	δ Pegasi / α Andromedae	Alpheratz*	
46	كن الحضيب	Kaff al-Khadīb	β Cassiopeiae	Caph*	

1.5 The Plates

The five plates are well designed with clear inscriptions. Four of these are made for eight different latitudes and the fifth one is engraved with ecliptic coordinates on one side and with multiple horizons on the other side, as shown in table two.

Table 2: Plates of the Astrolabe

Plate	Latitude in degrees	Longest day in hours	Azimuth arcs	Unequal Hour lines	Dotted lines for equal hours

1a	20	13	Below the horizon 5°	yes	Drawn from both the eastern and western horizons
1b	36	14	Below the Horizon 5°	yes	Drawn from the western horizon
2a	25	$13 ; 25$	Below the Horizon 5°	yes	Drawn from both the eastern and western horizons
2b	30	$13 ; 18$	Below the Horizon 5°	yes	Drawn from the western horizon
3a	27	$13 ; 46$	Below the Horizon 5°	yes	Drawn from both the eastern and western horizons
3b	32	$14 ; 8$	Below the Horizon 5°	yes	Drawn from the western horizon
4a	34	$14 ; 16$	Below the Horizon 5°	yes	Drawn from the western horizon
4b	42	$15 ; 2$	Above the Horizon 5°	yes	Drawn from the western horizon

The first four plates display the local horizon. On these plates, two straight lines cross each other at the centre (North Pole) thus dividing the plate into four equal quadrants. The vertical line is the meridian (khatt wasat alsama \bar{a}) that connects north (at the bottom of the plate) to the south (at the top of the plate) through the pole and the zenith. A part of this line from zenith to south is called khatt nisf al-nabār. The horizontal line is called east-west line or level horizon (ufuq al-istīza \bar{a}). The true horizon is marked by an arc below the centre and is marked with "east" (al-mashriq) and "west" (al-maghrib). There are three concentric circles on the plates. The outermost circle at the periphery represents Tropic of Capricorn (madàr ra's al-jadī), the next circle is the equator (d \bar{a} 'irat al-i'tid $\bar{a} l$ and the innermost circle represents the Tropic of Cancer (madār ra's al-saratān).

Fig. 4 The Plate for Lahore at the Latitude of 32 degrees

1.5.1 The Almucantars

A basic requirement in observational astronomy is to find the altitude of an object. When we stand in the open, the imaginary circles of equal altitude are concentric between the horizon and the zenith. In case of the astrolabe these are represented by a set of eccentric circles (called almucantars from the Arabic word al-muqantarah) drawn between the horizon and the zenith. In the present astrolabe these circles are drawn for every degree from zero (the altitude of the horizon) to ninety degrees (zenith). Such astrolabes are classified as complete (Arabic: tāmm) while those having intervals of two or more degrees in circles are known by other designations. The accuracy of readings improves by the number of circles. In this astrolabe the almucantars are marked either by the odd numbers or the even numbers using the abjad
notation. Every fifth circle has distinct dots on the circles to enhance legibility.

1.5.2 The Azimuth Arcs

The great vertical circles passing through the zenith and nadir intersect the almucantars at right angles. The lines for azimuth (from the Arabic word alsamt, "direction," plural al-sumūt transformed to azimuth) pass through the zenith. In this astrolabe the plates for seven latitudes have azimuth lines drawn below the horizon at intervals of 5°; as against this, on the plate for the latitude 42°, the azimuth arcs are drawn above the horizon at 5° intervals. These arcs are numbered from the west point (nuqtat al-maghrib) on the horizon up the meridian from 0° to 90° at intervals of 5°. Similarly, azimuths are marked from the west point, in counter clockwise direction from 0° to 30° towards south. This pattern is repeated on the eastern side as well where the east point (nuqtat al mashriq) is the starting point.

The space under the "horizon arc" (taht al-ard) is used for the label of the plate. The terrestrial latitude (al-ard) is inscribed to the right of the meridian line and the duration of the longest day in hours (al-s $\bar{a} ‘ a b)$ is inscribed to the left the meridian line. Both these values are expressed in the abjad notation.

1.5.3 The Hour Lines

In the lower half of the plates are drawn lines for seasonal or unequal hours and equal hours. The seasonal hours are obtained by dividing separately the length of the day and the length of the night by twelve. Therefore they vary from the daytime to the night and from season to season. The equal hours are obtained by dividing the time from midnight to midnight, or from midday to midday, by twenty-four. Therefore the equal hours have always the same length. The seasonal hours are indicated by plain lines and are counted from the western horizon from one to twelve. The equal hours are indicated by dotted lines. On some plates, these are drawn from the western horizon and on some others, both from the eastern and western horizons.

1.5.4 The Plate of Ecliptic Coordinates

This plate carries the stereographic projections for the latitude which is the complement of the obliquity (ninety degrees minus the obliquity), roughly sixty-six; thirty degrees. On this plate the local horizon is the same as the ecliptic circle and the zenith coincides with the Pole. Here almucantars become latitude circles and the azimuths, the longitude circles. When the rete is placed upon this plate, the longitudes and latitudes of the star pointers can be measured and verified. Therefore, the plate is called mīzān al-'ankabūt (i.e.,
"the balance of the rete"). It can also be used for converting ecliptic coordinates into equatorial coordinates and vice versa. ${ }^{28}$

On this plate, almucantars or latitude circles are drawn for each degree and alternate circles are numbered. The azimuth circles are drawn for every five degrees and numbered separately in each sign as five, ten, fifteen, twenty, twenty-five and thirty. Along the ecliptic circle, the names of the zodiac signs are inscribed in long strokes anti-clockwise. However, the name mïzān al'ankabūt is not engraved which is against the usual practice.

Fig. 5 The Plate of Ecliptic Coordinates

[^8]
1.5.5 The Plate of Horizons

On the reverse side of the fifth plate is engraved the plate of horizons (safibah äfaqiyyab). It has three concentric circles of equator and two tropics. Two lines cross each other at the centre to divide the plate into four quadrants. In these four quadrants are drawn half horizons for each degree of latitude from four to sixty-five degrees. Declination scales are engraved along the diameters. The scales are numbered in units of five up to twenty-three; thirty which is the obliquity. Against the usual practice, the name of the plate safibah áfaqiyyab is not written on this plate.

Fig. 6 The Plate of Horizons

Fig. 7 The Geographical Gazetteer

1.6 The Geographical Gazetteer

On the inner surface of the mater is engraved a geographical gazetteer containing the names of one hundred and twenty localities (al-bilād) with their longitudes (al-t $\bar{u} \bar{l}$) and latitudes (al-'ard). In his gazetteers, Muqīm often varies the order of arranging the localities: sometimes he commences with the holy city of Makkah; sometimes he arranges the localities according to geographical regions like Andalus, Maghrib and so on; and sometimes he arranges them according to the climates of Greek antiquity.

In Ptolemaic geography, the inhabited portion of the world was divided into seven horizontal strips called climes or climates (aqā̄īm). The longest day in each climate is half an hour longer than in the previous climate. On the back of the present astrolabe, Muqīm engraved a table (see Table 3) showing the terrestrial latitudes at the beginning of each climate and the duration of the longest day at that latitude.

Muqim also changes the physical arrangement of the data in the gazetteers. Generally, the data is engraved in small cells created by a series of concentric circles which are cut across by a number of diameters passing through the centre. In the present astrolabe, instead of straight diameters, he divides the concentric circles by lines which are all curved to one side, thus creating a spiral-like appearance.

There are four annuli in the present gazetteer. In each annulus, there are four rows or rings. The uppermost ring gives the title of the climate, the next lower ring gives the longitude of the city, and next lower ring gives name of the city and the last ring the latitude of that city. We may call this arrangement of data a set; where each set comprises of four rings. The outermost set has forty-seven names, the next set has thirty-five, then twentythree and innermost set has fifteen names of the cities.

The heading on the outermost ring reads, "az khatt-i istiwa \bar{a}, ta $\bar{a} q l \bar{\imath} m-i l$ awrwal" (from line of the equator up to the first climate). The last heading reads, "khārij az iqlìm-i haftum" (beyond the seventh climate.)"

S.No.	Place/City al-Bilàd	Long. al-T̄̄l	Lat. al-Ard	Transliteration	Modern Name
Annulus 1					
Az Khat-i Istiwà 'ta Iqlim Awwal (From the Equator to the First Climate)					
1	ر ساهل اوقانوس	11; 0	0;0	Bahr Sāhil Awqiyānūs	Ocean Coast of Oceanus ${ }^{29}$
2		21;0	3;0	Jazīrah Qanbalah	Madagascar
3	G)	177;0	5; 0	Jamkūt	Yamakoti ${ }^{30}$
4	شا	180; 0	5;0	Shilà	(in China)
5	S.f	54; 10	10; 0	Kōh-i kō	(in Africa)
6	\%	76; 0	11; 0	'Adan	Aden, Yemen

[^9]| (The First Climate) Iqlim awwal | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | ج | 75;0 | 13; 30 | Jabal | Jabal Zuqar Island |
| 8 | ه | 77; 15 | 13; 30 | Dammār | Dhamar, Yemen |
| 9 | Mrij ${ }^{1 / 1}$ | 10; 5 | 14;0 | Lahah az bar bar 31 | Berbera, Africa |
| 10 | زي | 74; 20 | 14; 10 | Zabayd | Zabid, Yemen |
| 11 | (740 | 77;0 | 14;30 | San ân dar Mulk-i Yemen | San ${ }_{\text {č', }}$, Yemen |
| 12 | ج | 75;30 | 14;30 | Janad | Janad, Yemen |
| 13 | - | 107; 0 | 17;0 | Sōmnāt | Somnath, India |
| 14 | ز | 114; 0 | 17; 15 | Zaytūn | Hang Zhou, China |
| 15 | P10 | 105; 30 | 17; 20 | Panjāpūr | Bijapur, India |
| 16 | (1): | 108; 0 | 20; 30 | Burhānpūr | Burhanpur, India |
| 17 | गtit 1 | 111; 0 | 20; 30 | Daulatābād | Daulatabad, India |

(Second Climate) (Iqlìm-i Dūvum)					
18	ج	76; 0	21;0	Jeddah	Jeddah, Saudi Arabia
19	b	77; 30	21; 20		Taif, Saudi Arabia
20	مكه باركد	77; 10	21; 40	Makkah Mubārak	Mecca, Saudi Arabia
21	ك ك	89; 20	22; 20	Kanbayāt	Cambay, India
22	-	75; 20	24; 20	Khayber	Khyber, Saudi Arabia
23	0	75; 20	25; 0	Madīnah Tayyibah	Medina, Saudi Arabia
24	رمروز	92; 0	25; 0	Hurmūz	Hormuz, Iran
25		110; 5	26; 0	Ajmīr	Ajmer, India
26	كوالير	114; 0	26; 29	Gwāliar	Gwalior, India
27	栓	114; 18	26; 30	Lakhnōtī	Laknauti, India
28	ج	105; 50	26; 35	Qanūj	Kannauj, India
29	?	119; 6	26; 36	Jaunpūr	Jaunpur, India
30	10,	115; 0	26; 43	Akbarābād Dār al-Khilāfat	Agra (Akbarābād, the capital of the Caliphate), India
31	9	116; 38	26; 45	Kūbāmū	Gopamau, India

[^10]| 32 | هاكهيور | 115; 10 | 26; 49 | Mānikpūr garh | Manikpur, India |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33 | او | 118; 6 | 27; 22 | Awadh | Awadh, India |
| 34 | بإؤِّ | 115; 14 | 27; 40 | Badā’̄̄n | Badaun, India |

Third Climate (Iqlim-i Sivum)

35	<	105; 0	27; 40	Bakr	
36		114; 20	28; 4	Kōlkandah	Golconda (Hyderabad), India
37	($)$ J 5	114; 19	28; 4	Kōl [wa] Jalālī	Aligarh and Jalali, India
38	فجte	87; 30	28; 10	Fīrūzābād	Firuzabad, India
39	س سلطان و	115; 0	28; 30	Sultāankōt	Sultankot, India
40	دحلى دارالماكى الهند	103; 35	28; 39	Dihlī dār al-Mulk al-Hind	Delhi (the capital of India)
41	برن	114; 0	28; 48	Baran	Bulandshahar, India
42		113;20	28; 52	Panipat	Panipat, India
43	شيراز	88; 0	29; 36	Shīrāz	Shiraz, Iran
44	ملنّن	107; 35	29; 40	Multān	Multan, Pakistan
45	انسى	112; 25	29; 45	Hānsī	Hansi, India
46	0,	84; 0	30; 0	Baṣrah	Basra, Iraq
47	ن65	91; 30	30; 5	Kirmān	Kerman, Iran

Annulus 2
Tatimmab-i Iqlìm-i Sivum (Continuation of the Third Climate)

48	-	112; 38	30; 10	Tānīsar	Thanesar, India
49	كندريه	61; 54	30; 18	Iskandaryah	Alexandria, Egypt
50	-0	63; 20	30; 20	Miṣr	Cairo, Egypt
51	ساهـ	112; 25	30; 30	Sunām	Sunam, India
52	برشور	85; 55	31; 0	Parshōr	Peshawar, Pakistan
53	45	79; 30	31; 30	Kūfah	Kufa, Iraq
54	بِّ المّدّس	66; 30	31; 50	Bayt al-Maqdis	Jerusalem, Israel
55	لاهور درلسطلت	109; 20	31; 50	Lāhōr Dār alSaltanat	Lahore (the capital of the Sultanate), Pakistan
56	\%	89; 0	32; 0	Yazd	Yazd, Iran
57	¢	87; 40	32; 25	Ișfahān	Isfahan, Iran
58	فول	104; 35	32; 55	Farmal	
59	قندها	107; 40	33; 0	Qandahār	Qandahar, Afghanistan
60	¢ك	109; 0	33; 0	Siyālkōt	Sialkot, Pakistan

61	0	72; 0	33; 15	Madāyin	Madain, Iraq
62	هثق	70; 0	33; 15	Dimashq	Damascus, Syria
63	+	101; 55	33; 20	Maymand	Meymand, Iran
64	Jix	82; 0	33; 25	Baghdād	Baghdad, Iraq
Iqlim-i Chabārum (Fourth Climate)					
65	طارلى	69; 40	34; 0	Tarābulus	Tripoli, Libya
66	je	76; 0	34; 0	‘Ānah	Anah, Iraq
67	\% 6	86; 0	34; 0	Kāshān	Kashan, Iran
68	ل90	77; 0	34;30	Mawșil	Mosul, Iraq
69	9i	92; 30	34;30	Tūn	Tun, Iran
70	بٌ	94;30	34;30	Hirāt	Herat, Afghanistan
71	46	104; 40	34;30	Kābul	Kabul, Afghanistan
72	\%	85; 40	34; 45	Qum	Qom, Iran
73	9	86; 20	35; 0	Rayy	Rayy, Iran
74	س	85; 0	35; 0	Sāwah	Saveh, Iran
75	μ	108; 0	35; 0	Kashmïr	Srinagar, India
76	UR	83; 0	35; 10	Hamadān	Hamadan,Iran
77	-	72; 10	35; 50	Halab	Aleppo, Syria
78	\%ثهد	92; 30	36; 0	Mashhad	Mashhad, Iran
79	W	88; 20	36; 0	Suhravard	Suhraward, Iran
80	سبيزورار	91; 30	36; 5	Sabzvār	Sabzevar, Iran
81	بإبّا	89; 30	36; 10	Bastām	Bastam, Iran
82	"	101; 0	36; 11	Balkh	Balkh, Afghanistan
Annulus 3					
Tatimmab-i Iqlim-i Chahārum (Continuation of the Fourth Climate)					
83	b ba	85; 45	36; 10	TTāliqān	Taloqan, Afghanistan
84	罗	84; 30	36; 45	Al-bahar	Al-bahar ?
85		89; 35	36; 50	Astarābād	Gorgan, Iran
86)	85; 0	35; 55	Qazwin	Qazvin, Iran
87	ب104	84; 24	37; 10	Badakhshān	Faizabad, Afghanistan
88	盛	82; 0	37; 20	Maräghah	Maragha, Iran
89	سرنس	94;30	37; 30	Sarakhs	Sarakhs, Iran
90	20	97; 0	37; 40	Marw	Merv or Mary, Turkmenistan
91	\%	82; 0	38; 0	Tabrīz	Tabriz, Iran
92	اركيل	80; 30	38; 0	Ardabil	Ardabil, Iran

93	\%	78; 20	38; 10	Naushahr	Noshahr, Iran
94	خ،	81; 15	38; 40	Nakhijvān	Nakhichevan, Azerbaijan
Iqlim-i Panjum (Fifth Climate)					
95	\%	84;30	39;30	Bākūyah	Bakuyah
96	.	99; 16	39; 37	Samarqand	Samarqand, Uzbekistan
97	,	97; 30	39; 50	Bukhārā	Bukhara, Uzbekistan
98	تبت	110; 0	40; 0	Tibbat	Tibet (Lhasa)
99	${ }^{4} 3 \%$	83; 0	40; 30	Barda áh	Barda, Azerbaijan
100	-	84; 30	40; 50	Shamākhī	Shamakhi, Azerbaijan
101	تريّي	66; 30	41; 0	Qūniyah	Konya, Turkey
102	(\%)	105; 35	41; 55	Khujand	Leninabad, Russia
103	-	107; 0	42; 0	Khutan	Khotan, China
104	ك شا	81; 35	42; 0	Kāshān	Kashan, China
105	\%رغار	102; 0	42; 20	Farghānah	Farghana, Uzbekistan
Annulus 4					
Iqlim-i Shashum (Sixth Climate)					
106	K كشر	106; 30	44; 0	Kāshghar	Kashgar, China
107		92; 0	44; 0	Bandqiyah	
108	شإخ	100; 30	44; 0	Shalkh	Chulak-kurgan, Kazakhstan
109	طراز	99; 50	44;31	T Tarāz	Dzhambul, Kazakhstan
110	بربإِّ بش	111; 0	45; 50	Bāligh baish	Pochongtse, China
111	فرف	115; 0	46; 0	Qarāqūrūm	Karakoram
112	خان بإ	124; 0	46; 0	Khān Bāligh	Beijing, China
113	䏔	67; 20	46;30	Harqlah	Eregli, Turkey
Iqlim-i Haftum (Seventh Climate)					
114	قا	100; 0	48; 0	Araq	Araq
115	بالفا	90; 0	49;30	Bulghār	(Bulgars)
116	- إ0¢	62; 0	50; 0	Aqchā kirmān	BelgoradDnistrowskyj, Ukraine
117	قوف	65; 30	50; 0	Qir qir	(in Crimea)

Khārij az Iqlīm-i haftum (Beyond the Seventh Climate)					
118	-	65; 45	50; 40	Mārī Kirmān	Mari Kirman
119	جزلر ودجرد	68; 50	62; 0	Jazāyir rūdjard	
120	dr	66; 5	51; 0	Sudāq	Sudak, Crimea

1.7 The Back of the Astrolabe

A north-south vertical line and an east-west horizontal line divides the back of the astrolabe (zabr al-asturlāb) into four quadrants (rubs). The outer rim of the two upper quadrants carries a degree scale for measuring the altitude of heavenly bodies. The scale is divided in single degrees and groups of five degrees are labelled in abjad. The angles of altitude are numbered from the horizon in the east and west proceeding up to the south point at the top.

Fig. 8 The Back of the Astrolabe

1.7.1 The Upper Left Quadrant

It is also termed as the south-eastern quadrant (al-rubr al-sharq $\bar{\imath}$ al-jan $\bar{u} b \bar{\imath}$). It carries the sine-cosine graph with sixty horizontal and sixty vertical parallel lines. Every fifth line highlighted with dots. With the help of this sine-cosine
graph, the angles of altitude measured by the alidade can be directly converted to the corresponding sines or cosines.

1.7.2 The Upper Right Quadrant

It is also called the south-western quadrant (al-rub‘ al-gharbī al-janub. It has sixty concentric quarter-circles of equal intervals. Every tenth circle is prominently marked with a distinct dotted line. The names of six zodiac signs are written along the horizontal radius of the quadrant and the other six names are written along the vertical radius. On the horizontal axis are written the names of Capricorn, Aquarius, Pisces, Aries, Taurus and Gemini, from the periphery up to the centre (i.e., from winter solstice to summer solstice). Along the vertical axis are inscribed the names of Cancer, Leo, Virgo, Libra, Scorpio and Sagittarius, starting from the centre (i.e., from summer solstice to winter solstice). Each zodiac sign is divided into ten parts of three degrees each, as represented by the quarter-circles. Every alternate division is numbered in abjad as six, twelve, eighteen, twenty-four and thirty.

In this quadrant, two sigmoid curves for the noon altitude of the sun are drawn for the latitudes of 27° and 32°. The upper curve has the label "the line of midday altitude at 27° latitude" (khatt-i nisf al-nabār al-'ard. A similar label is on the lower curve for 32° latitude. The two prominent cities on these latitudes are Agra and Lahore respectively, the imperial seats of Mughals. This arrangement of circles and curves enables the user to find the solar altitude at the meridian passage of the sun throughout the year. The conversion of solar altitude to the time of the day was equally simple and straightforward.

1.7.3 The Shadow Squares

In the lower half are drawn the shadow squares. The south-north vertical line divides these into two parts. On the two lower corners there is a label each reading zill-i sullam (the scale of shadows). The umbra recta is the direct shadow of a vertical gnomon on the horizontal plane and the umbra versa is the reverse shadow of a horizontal gnomon on the vertical plane. The right half of the square is for a gnomon of seven feet. Therefore the horizontal and vertical scales on this side are divided in to seven parts each which are reckoned in "feet" (Arabic qadam; pl. aqdām). The horizontal scale is marked 1, 2, 3, 4, 5, 6 and 7 (from centre to right). The vertical scale has markings 1, 2, 3, 4, 5, 6 and 7 (from top to bottom). The horizontal scale is labelled as zill-i aqdām mustavī (i.e., umbra recta in feet). The words zuill-i aqdām ma'kūs (i.e., umbra versa in feet), are inscribed along the vertical scale.

Likewise the square on the left is designed for a gnomon of twelve digits or "fingers" ($i s b a a^{〔}$; pl. așābi). The horizontal scale of this rectangle is labelled as

1.7.4 The Table of Climates inside the Shadow Squares

Inside the shadow squares, immediately below the horizontal diameter, is a table consisting of three columns and seven rows. Its heading is mābād $\bar{\imath}$ 'aqālīm-i sab'a (beginning of seven climates). The word intibāb (last limit) is inscribed just below the table. This indicates the zone beyond (i.e., north of) seventh clime.

Table 3. Beginnings of the Seven Climates

Climate	Latitude	Hours
First	$12 ; 48$	$12 ; 45$
Second	$20 ; 31$	$13 ; 15$
Third	$27 ; 34$	$13 ; 45$
Fourth	$38 ; 43$	$14 ; 15$
Fifth	$39 ; 1$	$14 ; 45$
Sixth	$43 ; 30$	$15 ; 15$
Seventh	$47 ; 38$	$15 ; 45$
انتّ (intibāa) "last limit"	$50 ; 31$	$16 ; 15$

1.7.5 Cotangent Scales

On the rim of the lower half are two cotangent scales, on the left in digits and on the right in feet, corresponding to the shadow scales. The scales have numbers written in abjad from the centre to either side as $5,10,15$, and so on up to 90 .

1.7.6 Astrological Tables

Inside the cotangent scales and again inside the shadow squares, there are several concentric semi-circular rows in which various tables of astrological interest are engraved upside down. Inside the cotangent scales are two astrological tables engraved in five concentric semi-circular rows. The first

[^11]three rows constitute the table of "limits" or "terms" (ḅudūd). Here each sign of the zodiac is divided in five parts and each part is assigned to a planet other than the sun and the moon, but the planets have varying strengths. In the outermost row are the names of the planets, represented by the last letter of their Arabic names, in the middle row the names of the signs and in the third row the numerical strengths of the planets in abjad notation.

The second row, together with the fourth and fifth rows, forms the table of decans (wujūh) and their regents. Here each sign is divided into three decans of 10° each, and assigned a regent. The decans are also known as "faces" or "aspects."

Inside the shadow squares, there are once again five semi-circular rows. In the outermost row are the names of the 12 signs of the zodiac; in the next row are the names of the 28 corresponding lunar mansions.

The remaining rows contain "triplicities" or "trigons" (muthallath, pl. muthallath $\bar{a} t)$. In this arrangement, the signs are divided into 4 groups so that in each group the signs are separated by 120°. These four groups carry the labels "fiery" (nā $\bar{\imath})$, "earthy" (turābī), "airy" (bavāa $\bar{\imath})$ and "watery" (māhī) respectively. ${ }^{33}$

1.8 The Alidade.

On the back of the astrolabe is the alidade. It is a 38 mm thick and 232 mm long metallic strip in the shape of a trapezoid. The shorter side is 190 mm and it has a width of 20 mm . The two vertical strips (used for observation of celestial objects) are 190 mm apart. These are 24 mm high and 18 mm in width with a thickness of 3 mm . Both the sighting vanes have two holes each, smaller one for sighting objects during daytime and bigger hole for stars at night. The alidades of the Lahore astrolabes usually carry scales corresponding to the divisions on the two upper quadrants on the back. But the present is alidade is completely blank without any scales. Therefore, it may not be original but a replacement.

1.9 The Minor Components

The pin (qutb) and the wedge (faras) of the astrolabe are mechanically functional and hold the plates and rete together with the mater. On the face of astrolabe is a horse-shaped wedge (faras) and a metallic ring (fals). The wedge (47 mm long) is very delicately made in its full detail. The mane of the horse,

[^12]the head and the eyes are its main striking features. All the plates and rete are attached to the mater by jib and cotter arrangement. The stove-head bolt (qutb) fits into 8 mm diameter hole (maban).

Fig. 9 The Name of the Maker and the Date of Manufacture on the Astrolabe

1.10 The Name of the Maker and the Date of Manufacture.

Along the inner boundary of the semi-circular table there is an inscription which reads:

ṣan'at-i aḍ'af al-'ibād Muhammad Muqīm ibn 'Īs \bar{a} ibn Allāh Dād asṭurlāb̄ Hum $\bar{a} y \bar{u} n \bar{\imath} L \bar{a} h \bar{b} r \bar{\imath}$ (Made by the weakest of the creatures [of Allah] Muhammad Muqīm son of $\overline{\text { Insa }}$ son of Allāh Dād of Lahore, the astrolabe maker of [the Emperor] Humāyūn).

The time of production of this astrolabe is mentioned in three different eras. Under the name of the maker is written "in 1047 year Hijrī." The other two dates i.e., "in 1007 year Yazdegirdi" and "in 1949 year Rūmi" are written on either side of shadow square. The Yazdegirdi year 1007 is from October 18, 1637 to October 17, 1638. The Rūmī (i.e., Syro-Macedonian era) year 1949 is from October 11, 1637 to 10 October 1638. The Hijrī year 1047 is from May 27, 1637 to May 14, 1638 AD. Therefore, the date of this astrolabe can be placed between end of 1637 and early 1638.

[^0]: * The study could not have come to fruition without the generous help of the Department of Archaeology and Museums, Islamabad and its staff members, Mahmood-ul-Hasan, Asad Ullah Khan, Mukhtar Ahmed, Adnan Rafaqat and Arshad Khan. The photography was arranged by Khola Malik, while Abera (the first author's daughter) helped in conversion of text from abjad to numerical data. To all of them the authors are highly indebted.
 The first author is also grateful to S. M. Razaullah Ansari (formerly Professor of Physics, Aligarh Muslim University, India) and James E. Morrison for their encouragement and renewing the interest in astrolabe designing.

[^1]: ${ }^{1}$ See Willy Hartner, "The Principles and Use of the Astrolabe," in Oriens, Occidens. Ausgewäblte Schriften zur Wissenschafts- und Kulturgeschichte. Festschrift zum 60. Geburtstag., ed. Willy Hartner (Hildesheim: G. Olms, 1968), 287-311; James E. Morrison, The Astrolabe (Rehoboth Beach, DE: Janus, 2007).

[^2]: ${ }^{2}$ Sharon L. Gibbs and George Saliba, Planispheric Astrolabes from the National Museum of American History (Washington, D.C.: Smithsonian Institution Press, 1984), 12.
 ${ }^{3}$ Isḥāq b. al-Nadīm, Kitāb al-Fibrist, trans. Muḥammad Isḥāq Bhattī (Lahore: Idārah-i Thaqāfat-i Islāmiyyah, 1990), 656.
 ${ }^{4}$ Ibn al-Zargalluh Muḥammad b. Muḥammad Ḥasan Țūsī, Risālab Bīst Bāb dār Ma'rifat-i Usturlāb (Tehran: 1335 AH), no. 307; Manuscript in University of the Punjab Library, Lahore, MFN No. 87530, Ph iii, 261.
 ${ }^{5}$ See Table 1 below; in the last column the modern star names which are derived from Arabic are marked with an asterisk (*).

[^3]:
 ${ }^{7}$ Reynold A. Nicholson, ed., The Mathnawí of Jalálud'dín Rúmí, (Lahore: Sang-e-Meel Publications, 2004), 474.

 ${ }^{9}$ Nicholson, The Mathnawí of Jalálud'dín Rúmí, bk. 1, line 110, p. 10.
 ${ }^{10}$ L. A. Mayer, Islamic Astrolabists and Their Works. (Genève: Albert Kundig, 1956).
 ${ }^{11}$ For a comparative analysis of these three styles, see Gibbs and Saliba, Planispheric Astrolabes from the National Museum of American History, 22-60.
 ${ }^{12}$ Ibid., 224 n. 29.
 ${ }^{13}$ Ibid., 17.

[^4]: ${ }^{14}$ Sreeramula Rajeswara Sarma, "The Lahore Family of Astrolabists and Their Ouvrage," Studies in History of Medicine and Science 13, no. 2 (1994): 207; reprinted in: Sreeramula Rajeswara Sarma, "The Lahore Family of Astrolabists and Their Ouvrage," in The Archaic and the Exotic: Studies in the History of Indian Astronomical Instruments (New Delhi: Manohar, 2008), 199-222.
 ${ }^{15}$ Yukio Ōhashi, "Astronomical Instruments in Classical Siddhāntas," Indian Journal of History of Science 29, no. 2 (1994): 155-314.
 ${ }^{16}$ Eduard Sachau, Alberuni's India., vol. 1 (New Delhi: Munshiram Manoharlal, 1992), 136-37.
 ${ }^{17}$ Amīr, Khusro, \bar{A} 'innab-i Sikandarī, comp. Muḥammad Sa‘īd Aḥmad Fārūqī (Aligaṛh: Maṭb‘ah Institute, 1917), 146-148.

[^5]: ${ }^{19}$ Sreeramula Rajeswara Sarma, "Sulțān, Sūri and the Astrolabe," Indian Journal of History of Science 35, no. 2 (2000): 129-47; Sreeramula Rajeswara Sarma, Astronomical Instruments in the Rampur Raza Library (Rampur: Rampur Raza Library, 2003), 7.
 ${ }^{20}$ Sarma, "A Bilingual Astrolabe from the Court of Jahāngīr," Indian Historical Review 38, no. 1 (2011): 80.
 ${ }^{21}$ Sarma, "The Lahore Family of Astrolabists and Their Ouvrage," 1994, 205-24; Sarma, "The Lahore Family of Astrolabists and Their Ouvrage," 2008, 199-222.
 ${ }^{22}$ Sarma, "The Lahore Family of Astrolabists and Their Ouvrage," 2008, 199-200.
 ${ }^{23}$ Ibid., 205.
 ${ }^{24}$ Ibid., 212.

[^6]: ${ }^{25}$ Saifur Rahman Dar, "Three Rare Astrolabes in the Collection of Lahore Museum and Lahore's Contribution towards Astrolabe-Making," Lahore Museum Bulletin 7, no. 1-2 (1994): 165-98, pl. I-X, figs. 1-3.
 ${ }^{26}$ It is listed as 2704 in Sharon L. Gibbs, Janice A. Henderson, and Derek J. de Solla Price, A Computerized Checklist of Astrolabes (New Haven, Conn.: Yale University Press, 1973).

[^7]: ${ }^{27}$ Gibbs and Saliba, Planispheric Astrolabes from the National Museum of American History, 62.

[^8]: ${ }^{28}$ See Morrison, The Astrolabe, 66.

[^9]: ${ }^{29}$ Oceanus (Greek Okeanos) is said to be the divine personification of the sea which encircles world.
 ${ }^{30}$ Sanskrit astronomical tradition envisages four notional cities on the terrestrial equator, which are separated from each other by 90°. Lankā is situated where the prime meridian which passes through Ujjain intersects the equator. Yamakoti is 90° east of Lankī̄ (i.e., roughly at Long $165^{\circ} \mathrm{E}$.

[^10]: ${ }^{31}$ E. S. Kennedy and M.H. Kennedy, "Al-Kāshh’s Geographical Table," Transactions of the American Pbilosophical Society 77, no. 7 (1987): 41, carries a reproduction of a page from the India Office manuscript. Here appears the name of the city بربر از بالد زنج , meaning "Berber from the land of Zanj" (Zanjistan became Zangibar and Zanzibar). It has been translated as Bajja of Berber on p. 7 (ibid).

[^11]: ${ }^{32}$ The shadow square has measurements in "feet" (aqdām) and "fingers" (asāabi) The genesis of these terms is described by Gibbs and Saliba see Gibbs and Saliba, Planispheric Astrolabes from the National Museum of American History, 226. The Greeks measured the height of a person in relation to the length of his foot at $7: 1$. This tradition of dividing shadows in 7 parts was followed by Muslims as well. In Babylon it was found that at night 1/12th of a degree in sky is obscured by a finger held at arm's length. Thus the shadow was also divided in terms of 12 fingers.

[^12]: ${ }^{33}$ For details about these tables, see George Rusby Kaye, The Astronomical Observatories of Jai Singh (New Delhi: Archaeological Survey of India, 1982), 120-26. M. P. Khareghat, Astrolabes, ed. Dinshaw D. Kapadia (Bombay: Shahnamah Press, 1950), 11-23.

